
MODEL BASED DESIGN AND SDR
Mansour Ahmadian∗, Zhila (Jila) Nazari†,Nory Nakhaee‡,Zoran Kostic?

∗ Sundance Multiprocessing Technology Ltd, Chesham, UK (mansour.a@sundance.com)
† School of Engineering and Electronics. University Of Edinburgh, Scotland, UK (z.j.nazari@ed.ac.uk)

‡ Sundance Digital Signal Processing Inc, Reno, USA (nory.n@sundance.com)
? The MathWorks, Natick, USA (wireless.sdr@mathworks.com)

Keywords: SDR, Model Based Design, DSP, Embedded soft-
ware development
Abstract
This paper focuses on the major phases present in the develop-
ment of an SDR system: design; simulation; code generation
and verification. The paper will illustrate, through an exam-
ple, the use of Model Based Design methodology and tools
to integrate the major development phases into one continu-
ous design cycle. Advanced system design concepts including,
simulation, code generation, hardware in the loop testing will
be presented. Implementation of an FM3TR (Future Multi-
Band, Multi-Waveform, Modular, Tactical Radio) modulator-
demodulator will be discussed and presented.

1 Introduction

In a traditional development, usually a system engineer defines
the overall system specification and presents it as a design doc-
ument to software engineers, who will have the task of imple-
menting those ideas into a fully working solution. However, the
main problem with this approach is the fact that in most cases
the ideas presented by the system engineer via the specifica-
tion document may widely differ to the implemented software.
Even the most detailed and diligently prepared type of docu-
mentation may not always guarantee that the design document
generated by the system engineers would be fully undestood
and accurately understood and interpreted correctly by the im-
plementing software programmers. The new emerging tech-
nique to solve this problem is ”model based design” [7], In this
technique, system engineers design and simulate the model us-
ing a model based design tool and he present the ideas behind
the solution as a working model of the system . Some of the
sophisticated model based design tools, have advanced features
for automatic generation of source code that would mimic the
simulated system and hence cutting time to market and reduc-
ing development costs.

In recent years model based design methodology has be-
come the preferred method for designing, modelling and simu-
lating complex dynamic systems [9] [5]. The traditional system
design methodology, which is shown in Fig.1, is rather time
consuming and error prone in nature.

In this simple model, the design and development of a sys-
tem and its introduction to the market consists of 4 separate
steps.

Fig. 1. Simplified presentation of traditional system design
methodology.

The first phase involves the definition and design of the ob-
jective system. This is the usually carried out by the system
designers, who define the system specification and presents it
as a document to software designers. This stage can have the
highest risk as it is the biggest source of error since different
code developers may interpret these definitions differently.

The next step is the implementation part. At this stage the
developers will generate suitable software code in a selected
language to implement the system. For embedded systems, the
preferred programming language is C. If the system definitions
are not clear, the programmers would refer to system designer
for clarification. Even after these clarifications, it is always
possible that the developed system may be different from the
one that system designers had in mind.

After code development, the next step is testing. It is very
common that the test result will be different from what the pro-
grammers or system designer had in their minds or specified. If
the tests show that there are mistakes in the system design, then
system designer should revise his design and pass it to code de-
velopers to implement the revised system. Of course it can also
be the case that the implementation is not a true representation
of the specification and hence the test results show errors. In
this case the programmer has to make sure he has a better un-
derstanding of the specification and either correct the algorithm
used or simply debug the application. Either of these processes
may be repeated several times. To complicate the matter even
further one can also consider the case where the test procedures
or implementation are wrong and thus giving erroneous results.

The main problem of this approach is the fact that in most



Fig. 2. Model based system design steps.

cases the ideas developed by the system engineer/designers and
contained in the specification document and the implemented
software, may be different.

After extensive testing and only when the system designers
are convinced that the implemented system is operating cor-
rectly and as intended production can start. The complexity of
this lengthy process makes project management ineffective and
very difficult.

2 Model based design

To improve on the above approach and in order to avoid mis-
comprehension the model-based system design was invented
[10] [8]. Model-based design is now an established approach
to develop efficient solutions to complex engineering problems
[2]. In this method, complicated systems can be created by us-
ing mathematical models representing system components and
their interactions with their surrounding environment. These
models have many applications in the design process, including
system simulation, stability analysis, and control algorithm de-
sign. By introduction of advanced, automated code-generation
technology, another application of these models has become
viable. These models can be used as the input to an automatic
code generation tool. Advanced, state of the art code genera-
tors can produce optimized, embeddable C source codes from
these models [1].

Using model based design methodology reduces the no of
development stages by combining the design, implementation
and test stages in into one process as shown in Fig.2.

The reduction of required steps, compared to the traditional
method, and complexity will result in better project manage-
ment and mitigation of product development risks. The sys-
tems designed using this approach reach the market faster and
end up costing less than the systems designed using the con-
ventional methods.

3 Model based Design and SDR

Complexity of software defined radio (SDR) applications and
the difficulty of testing, debugging and validating of such sys-
tems, makes them particularly suitable for development with

model based design tools as part of the core design process.
To demonstrate the viability of this methodology for design,
implementation and testing of a complex system, the model
based system design technique was used to implement and test
an FM3TR (Future Multi-Band, Multi-Waveform, Modular,
Tactical Radio) modulator-demodulator.

The model based design tool that was used for this work
was Simulink [14]. Simulink is a well-known tool for mod-
elling, analysing, and simulating a very wide variety of physi-
cal and mathematical systems, including those with non-linear
elements. As an extension of Matlab, Simulink adds many fea-
tures specific to dynamic systems while retaining all of Mat-
lab’s general purpose functionality and features. Using Simulink,
one models a system graphically, sidestepping much of the nui-
sance associated with conventional programming.

SMT6050 from Sundance [4] is used for code generation.
SMT6050 uses Real Time Workshop [13] from MathWorks
Inc. [3] to generate optimized; embeddable code targeting Sun-
dance hardware. Using SMT6050, generating code for Sun-
dance DSP boards is only a click away. Sundance SDR kit is
used as the basic hardware platform for testing the developed
code. This kit consists of the following parts:

• PCI carrier board (310Q): To hold DSP and DAQ board
and build a very high speed data communication channel
between DSP and PC.

• DSP board (SMT365G): Texas Instrument TMS320C6416
DSP processor running at 1GHz with 4Mbytes ZBT-RAM.
It also contain a Xilinx Virtex II XC2V1000-4 FPGA.

• DAQ module(SMT370): Two 14-bit ADCs (AD6645)
sampling up to 105 MHz. Dual 16-bit TxDAC (AD9777)
sampling up to 400 MHz (interpolation).

To implement the application first it was designed and tested
with Simulink. When the design phase finished and the system
behaviors was proved to meet the specifications, the created
model was prepared for code generation. To test the generated
code, we used ”Hardware In the Loop” (HIL) procedure. In
HIL technique, the generated code is run on the real hardware.
Simulink inputs the test vectors to the hardware under consid-
eration and collects the system output and processes or displays
them to validate the system under test.

4 FM3TR modulator-demodulator

The implementation of a reference FM3TR (Future Multi-
Band, Multi-Waveform, Modular, Tactical Radio) modulator-
demodulator [12] was selected as the SDR system to be devel-
oped using model based system methodology. The FM3TR
was an international cooperative effort between the United States,
Germany, France and the United Kingdom to develop a re-
configurable communication system for ground and airborne
applications. FM3TR will allow communications systems to
be more affordable and be able to potentially bridge the in-
teroperability gap between nations. The primary goal in this
information exchange is improvement in the state of the art



Fig. 3. FM3TR modulator implemented in Simulink. (cour-
tesy of The MathWorks)

Fig. 4. FM3TR demodulator implemented in Simulink.
(courtesy of The MathWorks)

of multifunctional radios, primarily focused on hardware and
software architectures, digital signal processing, man-machine
interfaces, RF and digital technology and interconnecting net-
works.

5 Building modulator-demodulator in Simulink

Modulator and demodulator were built and simulated in Simulink.
The modulator is show in Fig.3. It was built using standard
Simulink blocks.

Modulator consists of three sub-systems:

1. Continues-phase encoder.

2. Waveform generators.

3. Memory-less modulator.

After building the modulator model in Simulink, it was
simulated and its functionality was tested. The demodulator
was also built using standard Simulink blocks. It is shown in
Fig.4.

The demodulator consists of two sub-systems:

1. Optimum state sequence receiver.

Fig. 5. Test bench to test the compatibility between developed
modulator and demodulator. (courtesy of The MathWorks)

2. Differential decoder.

Demodulator was also simulated and tested in Simulink.
To test the compatibility between the modulator and the

demodulator, a test bench was developed using Simulink as
shown in Fig.5.

To make sure that the modulator and the demodulator are
compatible with each other, the output of modulator was fed
to the input of demodulator. By comparing the input signal
to modulator and the signal out of the demodulator, the com-
patibility of modulator-demodulator was verified. The modu-
lator was fed by a Bernoulli-distributed random binary num-
ber generator. Simulation showed that the designed modulator-
demodulator were matched and the error between modulator
input and demodulator output were zero.

6 Code generation

SMT6050 was used for code generation. SMT6050 generates
not only all of the necessary C source code but also some other
valuable files such as:

• The linker command file that instructs the linker how to
place objects codes into DSP memory. The generated
linker command file is compatible with targeted hard-
ware and no user intervention is needed for this purpose.

• Make file to compile and link the generated source codes.
The compiler and linker switches are set according to
target hardware and target DSP without any need for user
knowledge of underlying hardware architecture and how
it would affect the developed software.

• Batch file to set-up required operating system environ-
mental variable and commands for running make utility.

After code generation, SMT6050 runs the generated batch file
to build the output file. It also creates required libraries for
Simulink block-sets, which are used in the designed model.
This created library is compatible with the target hardware and
DSP. As one needs to test the generated code and as already



Fig. 6. Hardware in the loop demo that shipped with SMT6050.

there was a test bench generated in Simulink, it was logical to
use that for testing the application code.

7 Hardware in the loop simulation and testing

In normal simulation all parts of simulation takes place on the
host computer (in case of Simulink, all of the simulation takes
place on the PC). In ”Hardware In the Loop” (HIL) simulation,
part of the simulation takes place on the host and another part
is executed on the DSP board [6]. SMT6050 includes a demo
that shows how to build and test a HIL system. In that demo,
data is captured from a microphone on PC and is sent to DSP
for processing. DSP processor adds reverb to the sound and
returns it back to the PC. The processed sound is then played
on PC speaker (Fig.6).

To test the generated code for FM3TR modulator-demodulator,
the Simulink model shown in Fig.5 was broken into two parts:

7.1 Test bench

Test bench would be run on PC and would feed test vectors
to the DSP and then receive the result back from the DSP. By
comparing the received signal to the feed signal, the validity of
generated code could be verified as shown in Fig.7.

The test bench model shown in Fig.5 was used to construct
hardware in the loop test bench. Modulator-demodulator were
removed from the model and SMT310 block was placed in-
stead of them. This block would then send data to DSP and
then receive data from DSP after processing. Some blocks
were added to convert data types that would be transmitted
to/received from the DSP. Since modulator-demodulator gen-
erate 27 time step delays, signal generated by Bernouli binary
generator was delayed by 27 so both the original and processed

Fig. 7. Test bench model prepared for hardware in the loop
simulation and testing.

Fig. 8. Modulator-demodulator block prepared for hardware in
the loop code generation.

signals would be in phase with each other. The generated and
processed signals were shown on a scope.

7.2 Modulator-demodulator

This is the part that went through code generation and runs
on the DSP. It consists of modulator-demodulator as shown in
Fig.8. The Sundance blocks ”From PC” and ”To PC” were
added to the model so the input of modulator came from PC
and output of demodulator was sent to the PC.

7.3 Synchronization

Since the two different part of this simulation is running on
different processor (test bench model on PC and modulator-
demodulator on DSP), they should be synchronized with each
other [11]. To solve this complex problem, SMT6050 uses
data flow synchronization technique. In this technique, the pro-
grams on PC and DSP are running freely with their own clock.
Test bench sends enough data to DSP so it can start its process-
ing and wait for results to come back from DSP. Modulator-
demodulator, which are running on DSP waits until enough
data become ready in its input. At this point, DSP starts to
process data as fast as it can and sends the resulting data back



Fig. 9. Testing of modulator-demodulator using HIL technique.

to PC. SMT6050 generates all of the required source code for
DSP to implement data flow synchronization. It also provide
SMT310 block for Simulink so that data communication with
DSP and synchronization become as simple as possible.

7.4 Testing

To test the validity of the design, code for modulator-demodulator
is created and downloaded into DSP board. By running test
bench model and comparing the DSP input and output sig-
nals, the validity of modulator and demodulator were verified
as shown in Fig.9.

8 Conclusion

Model based system design is introduced and the capability of
this methodology is investigated. An FM3TR reference wave-
form modulator-demodulator was developed using model based
methodology and tested. SMT6050 was used to generate code
for hardware in the loop simulation and testing. The generated
code was tested using hardware in the loop technology. The
result of this investigation shows that the application could be
easily modeled and then developed without the problems asso-
ciated with traditional design schemes.

9 Biography

Mansour Ahmadian is the senior software engineer in Sun-
dance. His current focus and interest is on new develop-
ment to use model based design for complete embedded
(hardware/software) design. He worked as software de-
veloper and recently as software project manager in dif-
ferent organizations.

He received a B.Sc. in Electronic Engineering in 1989,
and an M.Sc. in Biomedical Engineering in 1992. He
was awarded PhD by the University of Edinburgh for his
work in the field of medical signal processing in 2002.
Mansour published more than 20 papers in national and
international conferences and journals.

In 2001, Mansour won the ”Business plan competition”
in the university of Edinburgh. Two years later, he was

awarded the prestiges SMART:SCOTLAND for his in-
novative technique for image generation from phased ar-
ray systems with ultrasound, sonar and radar.

Mansour is a member of IEE.

Zhila (Jila) Nazari is working toward her PhD in the Univer-
sity Of Edinburgh. Her interest is digital signal process-
ing and medical image processing.

She received a BSc. and an MSc in Computer software
engineering. She developed several commercially avail-
able software applications.

Nory Nakhaee received a B.Tech degree in Automotive Engi-
neering and design and a Masters degree in Information
Technology from Loghborough University of Technol-
ogy in UK. Nory received a Ph.D. degree from Notting-
ham Trent University in UK for a research titled ”Auto-
matic parallelising complier for MIMD/DF machines”.
From 1982, for five years Nory worked at 3L Limited in
Scotland as software engineer, test engineer, commercial
manager and then as a company director. Subsequently
Nory founded Alpha Data Parallel Systems Ltd in Scot-
land and served as its Managing Director. In 1999 Nory
moved to US and founded Sundance DSP Inc and since
then he has been working for that company as its C.E.O.

Zoran Kostic obtained a PhD. degree in Electrical Engineer-
ing from University of Rochester and Dipl. Ing. De-
gree from University of Novi Sad in Yugoslavia. He has
worked for Bell Labs, AT&T Research, Thomson Re-
search, The MathWorks and taught at Columbia, UCLA,
SUNY and GMU. His expertise is in the field of wire-
less communications research, design and SW and HW
implementation across areas of systems, networks and
components.

Acknowledgements

The authors would like acknowledge the help that they received
during this work from MathWorks Inc. specially Amon Gai.
Authors also would like to acknowledged helps from their col-
leagues in Sundance, specially Flemming Christensen, Stephen
Malchi and Sebastien Maury.

References

[1] Mansour Ahmadian, Nory Nakhaee, and Andrew Nes-
terov. Rapid Application Development (RAD) and code
optimization technique. Global Signal Processing Con-
ference (GSPx), 2004.

[2] M. Baleani, A. Ferrari, L. Mangeruca, A.L. Sangiovanni-
Vincentelli, U. Freund, E. Schlenker, and H.J.Wolff.
Correct-by-construction transformations across design
environments for model-based embedded software devel-
opment. Proceedings of Design, Automation and Test in
Europe, 2:1044 – 1049, 2005.



[3] http://www.mathworks.com.

[4] http://www.sundance.com.

[5] J. Langenwalter. Embedded automotive system develop-
ment process - steer-by-wire system. Proceedings of De-
sign, Automation and Test in Europe, 1:538 – 539, 2005.

[6] Jim Ledin and Mike Dickens. Cracking the code auto-
matically. Electronic design europe, pages 19 – 23, June
2005.

[7] J. Loyall, Jianming Ye R. Shapiro, S. Neema, N. Ma-
hadevan, S. Abdelwahed, M. Koets, and D. Varner. A
case study in applying qos adaptation and model-based
design to the design-time optimization of signal analyzer
applications. IEEE Military Communications Conference
(MILCOM), November 2004.

[8] Arun Mulpur. Faster and better embedded signal pro-
cessing systems:. Global Signal Processing Conference,
2004.

[9] S. Neema, T. Bapty, J. Scott, and B. Eames. Signal pro-
cessing platform: a tool chain for designing high per-
formance signal processing applications. Proceedings of
SoutheastCon, pages 302–307, April 2005.

[10] T. Runolfsson. Optimal design of uncertain complex dy-
namical systems. 43rd IEEE Conference on Decision and
Control, 2:2231 – 2236, December 2004.

[11] N. Scaife and P. Caspi. Integrating model-based design
and preemptive scheduling in mixed time- and event-
triggered systems. Proceedings of 16th Euromicro Con-
ference, June 2004.

[12] Richard N. Smith. Description of the fm3tr proposed
reference waveform. Technical report, Software Defined
Radio Forum, August 2001.

[13] The MathWorks, Inc. Real-Time Workshop user’s manual
, 2002.

[14] The MathWorks, Inc. Simulink user’s manual (version 6),
2005.


